The circuit in below is shows about linear adjustment in the dividers. The circuit is using LM3914 for control the circuit. This circuit is very simple form. This is the figure of the circuit.
Three internal voltage dividers are shown connected in series to provide a 30-step display. If the resulting analog meter is to be accurate and linear the voltage on each divider must be adjusted, preferably without affecting any other adjustments. To do this, adjust R2 first, so that the voltage across R5 is exactly 1V. Then the voltages across R3 and R4 can be independently adjusted by shunting each with selected resistors of 6kΩ or higher resistance. This is possible because the reference of LM3914 No. 3 is acting as a constant current source. The references associated with LM3914s No. 1 and No. 2 should have their Ref Adj pins (pin 8) wired to ground, and their Ref Outputs loaded by a 620Ω resistor to ground. This makes available similar 20mA current outputs to all the LEDs in the system. [Circuit source: National Semiconductor, Inc]
Three internal voltage dividers are shown connected in series to provide a 30-step display. If the resulting analog meter is to be accurate and linear the voltage on each divider must be adjusted, preferably without affecting any other adjustments. To do this, adjust R2 first, so that the voltage across R5 is exactly 1V. Then the voltages across R3 and R4 can be independently adjusted by shunting each with selected resistors of 6kΩ or higher resistance. This is possible because the reference of LM3914 No. 3 is acting as a constant current source. The references associated with LM3914s No. 1 and No. 2 should have their Ref Adj pins (pin 8) wired to ground, and their Ref Outputs loaded by a 620Ω resistor to ground. This makes available similar 20mA current outputs to all the LEDs in the system. [Circuit source: National Semiconductor, Inc]
No comments:
Post a Comment